
The COM Specification Chapter 9. Connectable Objects

1Connectable Objects
The COM technology known as Connectable Objects (also called “connection points”) supports a generic
ability for any object, called in this context a “connectable” object, to express these capabilities:
· The existence of “outgoing” interfaces,1 such as event sets
· The ability to enumerate the IIDs of the outgoing interfaces
· The ability to connect and disconnect “sinks” to the object for those outgoing IIDs

· The ability to enumerate the connections that exist to a particular outgoing interface.
Support for these capabilities involves four interfaces: IConnectionPointContainer, IEnumConnectionPoints,
IConnectionPoint, and IEnumConnections. A “connectable object” implements IConnectionPointContainer to
indicate existence of outgoing interfaces. Through this interface a client can enumerate connection
points for each outgoing IID (via an enumerator with IEnumConnectionPoints) and can obtain an
IConnectionPoint interface to a connection point for each IID. Through a connection point a client starts or
terminates an advisory loop with the connectable object and the client’s own sink. The connection point
can also enumerate the connections it knows about through an enumerator with IEnumConnections.

1.1The IConnectionPoint Interface
The ability to connect to a single outgoing interface (that is, for a unique IID) is provided by a
“connection point” sub-object that is conceptually owned by the connectable object. The object is
separate to avoid circular reference counting problems. Through this interface the connection point
allows callers to connect a sink to the connectable object, to disconnect a sink, or to enumerate the
existing connections.
IDL:

[
uuid(B196B286-BAB4-101A-B69C-00AA00341D07)
 , object, pointer_default(unique)
]
interface IConnectionPoint : IUnknown
 {
 HRESULT GetConnectionInterface([out] IID *pIID);
 HRESULT GetConnectionPointContainer([out] IConnectionPointContainer **ppCPC);
 HRESULT Advise([in] IUnknown *pUnk, [out] DWORD *pdwCookie);
 HRESULT Unadvise([in] DWORD dwCookie);
 HRESULT EnumConnections([out] IEnumConnections **ppEnum);
 }

A connection point is allowed to stipulate how many connections (one or more) it will allow in its
implementation of Advise. A connection point that allows only one interface can return E_NOTIMPL from
EnumConnections.

1.1.1IConnectionPoint::GetConnectionInterface
HRESULT IConnectionPoint::GetConnectionInterface([out] IID *pIID);
Returns the IID of the outgoing interface managed by this connection point. This is provided such that a
client of IEnumConnectionPoints can determine the IID of each connection point thus enumerated. The IID
returned from this method must enable the caller to access this same connection point through
IConnectionPointContainer::FindConnectionPoint.

Argument Type Description
pIID IID * [out] A pointer to the caller’s variable to receive the IID of the outgoing

interface managed by this connection point.

1 An “outgoing” interface is one that an object defines itself but for which the object is itself a client. Another piece of code
called the “sink” (generically) implements the outgoing interface such that the object can call the sink.

DRAFT Page: 1 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 9. Connectable Objects The COM Specification

Return Value Meaning
S_OK Success.
E_POINTER The address in pIID is not valid (such as NULL)
E_UNEXPECTED An unknown error occurred.

Comments:
This function must be completely implemented in any connection point; therefore E_NOTIMPL is not an
acceptable return code.

1.1.2IConnectionPoint::GetConnectionPointContainer
HRESULT IConnectionPoint::GetConnectionPointContainer([out] IConnectionPointContainer

**ppCPC);
Retrieves the IConnectionPointContainer interface pointer to the connectable object that conceptually owns
this connection point. The caller becomes responsible for the pointer on a successful return.

Argument Type Description
ppCPC IConnectionPointContainer * [out] A pointer to the caller’s variable in which to

return a pointer to the connectable object’s
IConnectionPointContainer interface. The
connection point will call
IConnectionPointContainer::AddRef before returning
and the caller must call IConnectionPoint::Release
when it is done using the pointer.

Return Value Meaning
S_OK Success.
E_POINTER The value in ppCPC is not valid (such as NULL)
E_UNEXPECTED An unknown error occurred.

Comments:
E_NOTIMPL is not an allowable return code.

Copyright © 1995 Microsoft Corporation Page: 2 DRAFT
All Rights Reserved

The COM Specification Chapter 9. Connectable Objects

1.1.3IConnectionPoint::Advise
HRESULT IConnectionPoint::Advise([in] IUnknown *pUnk, [out] DWORD *pdwCookie);
Establishes an advisory connection between the connection point and the caller’s sink object identified
with pUnk. The connection point must call pUnk->QueryInterface(iid, ...) on this pointer in order to obtain the
correct outgoing interface pointer to call when events occur, where iid is the inherent outgoing interface
IID managed by the connection point (that is, the that when passed to
IConnectionPointContainer::FindConnectionPoint would return an interface pointer to this same connection
point).
Upone successful return, the connection point provides a unique “cookie” in *pdwCookie that must be later
passed to IConnectionPoint::Unadvise to terminate the connection.
Argument Type Description
pUnk IUnknown * [in] The IUnknown pointer to the client’s sink that wishes to receive

calls for the outgoing interface managed by this connection
point. The connection point must query this pointer for the
correct outgoing interface. If this query fails, this member
returns CONNECT_E_CANNOTCONNECT.

pdwCookie DWORD * [out] A pointer to the caller’s variable that is to receive the connection
“cookie” when connection is successful. This cookie must be
unique for each connection to any given instance of a
connection point.

Return Value Meaning
S_OK The connection has been established and *pdwCookie has the connection key.
E_POINTER The value of pUnk or pdwCookie is not valid (NULL cannot be passed for

either argument)
E_UNEXPECTED An unknown error occurred.
E_OUTOFMEMORY There was not enough memory to complete the operation, such as if the

connection point failed to allocate memory in which to store the sink’s
interface pointer.

CONNECT_E_ADVISELIMIT The connection point has already reached its limit of connections and cannot
accept any more.

CONNECT_E_CANNOTCONNECT The sink does not support the interface required by this connection point.

1.1.4IConnectionPoint::Unadvise
HRESULT IConnectionPoint::Unadvise([in] DWORD dwCookie);
Terminates an advisory connection previously established through IConnectionPoint::Advise. The dwCookie
argument identifies the connection to terminate.

Argument Type Description
dwCookie DWORD [in] The connection “cookie” previously returned from

IConnectionPoint::Advise.

Return Value Meaning
S_OK The connection was successfully terminated.
E_UNEXPECTED An unknown error occurred.
CONNECT_E_NOCONNECTION dwCookie does not represent a value connection to this connection point.

DRAFT Page: 3 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 9. Connectable Objects The COM Specification

1.1.5IConnectionPoint::EnumConnections
HRESULT IConnectionPoint::EnumConnections([out] IEnumConnections **ppEnum);
Creates an enumerator object for iteration through the connections that exist to this connection point.
Argument Type Description
ppEnum IEnumConnections * [out] A pointer to the caller’s variable to receive the interface

pointer of the newly created enumerator. The caller is
responsible for releasing this pointer when it is no longer
needed.

Return Value Meaning
S_OK Success.
E_POINTER The address in ppEnum is not valid (such as NULL)
E_NOTIMPL The connection point does not support enumeration.
E_UNEXPECTED An unknown error occurred.
E_OUTOFMEMORY There was not enough memory to create the enumerator.

1.2The IConnectionPointContainer Interface
When implemented on an object, makes the object “connectable” and expresses the existence of
outgoing interfaces on the object. Through this interface a client may either locate a specific “connection
point” for one IID or it can enumerate the connections points that exist.
IDL:

[
uuid(B196B284-BAB4-101A-B69C-00AA00341D07)
 , object, pointer_default(unique)
]
interface IConnectionPointContainer : IUnknown
 {
 HRESULT EnumConnectionPoints([out] IEnumConnectionPoints **ppEnum);
 HRESULT FindConnectionPoint([in] REFIID riid
 , [out] IConnectionPoint **ppCP);
 }

1.2.1IConnectionPointContainer::EnumConnectionPoints
HRESULT IConnectionPointContainer::EnumConnectionPoints([out] IEnumConnectionPoints

**ppEnum);
Creates an enumerator of all the connection points supported in the connectable object, one connection
point per IID. Since IEnumConnectionPoints enumerates IConnectionPoint* types, the caller must use
IConnectionPoint::GetConnectionInterface to determine the actual IID that the connection point supports.
The caller of this member must call (*ppEnum)->Release when the enumerator object is no longer needed.
Argument Type Description
ppEnum IEnumConnectionPoints * [out] A pointer to the caller’s variable that is to receive

the interface pointer to the enumerator. The caller
is responsible for releasing this pointer after this
function returns successfully.

Return Value Meaning
S_OK The enumerator was created successfully.
E_UNEXPECTED An unknown error occurred.
E_POINTER The value passed in ppEnum is not valid (such as NULL).
E_OUTOFMEMORY There was not enough memory to create the enumerator object.

Copyright © 1995 Microsoft Corporation Page: 4 DRAFT
All Rights Reserved

The COM Specification Chapter 9. Connectable Objects

Comments:
E_NOTIMPL is specifically disallowed because outside of type information there would be no other means
through which a caller could find the IIDs of the outgoing interfaces.

1.2.2IConnectionPointContainer::FindConnectionPoint
HRESULT FindConnectionPoint([in] REFIID riid , [out] IConnectionPoint **ppCP);
Asks the “connectable object” if it has a connection point for a particular IID, and if so, returns the
IConnectionPoint interface pointer to that connection point. Upon successful return, the caller must call
IConnectionPoint::Release when that connection point is no longer needed.
Note that this function is the QueryInterface equivalent for an object’s outgoing interfaces, where the
outgoing interface is specified with riid and where the interface pointer returned is always that of a
connection point.

Argument Type Description
riid REFIID [in] A reference to the outgoing interface IID whose

connection point is being requested.
ppCP IConnectionPoint ** [out] The address of the caller’s variable that is to receive

the IConnectionPoint interface pointer to the connection
point that manages the outgoing interface identified
with riid. This is set to NULL on failure of the call;
otherwise the caller must call IConnectionPoint::Release
when the connection point is no longer needed.

Return Value Meaning
S_OK The call succeeded and *ppCP has a valid interface pointer.
E_POINTER The address passed in ppCP is not valid (such as NULL)
E_UNEXPECTED An unknown error occurred.
E_OUTOFMEMORY There was not enough memory to carry out the operation, such as not being

able to create a new connection point object.
CONNECT_E_NOCONNECTION This connectable object does not support the outgoing interface specified by

riid.

Comments:
E_NOTIMPL is not allowed as a return code for this member. Any implementation of
IConnectionPointContainer must implement this method.

1.3The IEnumConnectionPoints Interface
A connectable object can be asked to enumerate its supported connection points–in essence, it’s outgoing
interfaces–through IConnectionPointContainer::EnumConnectionPoints. The resulting enumerator returned from
this member implements the interface IEnumConnectionPoints through which a client can access all the
individual connection point sub-objects supported within the connectable object itself, where each
connection point, of course, implements IConnectionPoint.
Therefore IEnumConnectionPoints is a standard enumerator interface typed for IConnectionPoint*.
IDL:

[
uuid(B196B285-BAB4-101A-B69C-00AA00341D07)
 , object, pointer_default(unique)
]
interface IEnumConnectionPoints : IUnknown
 {
 HRESULT Next([in] ULONG cConnections
 , [out, max_is(cConnections)] IConnectionPoint **rgpcn

DRAFT Page: 5 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 9. Connectable Objects The COM Specification

 , [out] ULONG *pcFetched);

 HRESULT Skip([in] ULONG cConnections);
 HRESULT Reset(void);
 HRESULT Clone([out] IEnumConnectionPoints **ppEnum);
 }

1.3.1IEnumConnectionPoints::Next
HRESULT IEnumConnectionPoints::Next([in] ULONG cConnections , [out, max_is(cConnections)]

IConnectionPoint **rgpcn, [out] ULONG *pcFetched);

Enumerates the next cConnections elements in the enumerator’s list, returning them in rgpcn along with the
actual number of enumerated elements in pcFetched. The caller is responsible for calling
IConnectionPoint::Release through each pointer returned in rgpcn.

Argument Type Description
cConnections ULONG [in] Specfies the number of IConnectionPoint * values to return

in the array pointed to by rgpcn. This argument must be 1
if pcFetched is NULL.

rgpcn IConnectionPoint ** [out] A pointer to a caller-allocated IConnectionPoint * array of
size cConnections in which to return the enumerated
connection points. The caller is responsible for calling
IConnectionPoint::Release through each pointer enumerated
into the array once this method returns successfully. If
cConnections is greater than one the caller must also pass a
non-NULL pointer passed to pcFetched to know how many
pointers to release.

pcFetched ULONG [out] A pointer to the variable to receive the actual number of
connection points enumerated in rgpcn. This argument
can be NULL in which case the cConnections argument
must be 1.

Return Value Meaning
S_OK The requested number of elements has been returned and *pcFetched (if non-

NULL) is set to cConnections if
S_FALSE The enumerator returned fewer elements than cConnections because there

were not that many elements left in the list.. In this case, unused elements in
rgpcn in the enumeration are not set to NULL and *pcFetched holds the
number of valid entries, even if zero is returned.

E_POINTER The address in rgpcn is not valid (such as NULL)
E_INVALIDARG The value of cConnections is not 1 when pcFetched is NULL; or the value of

cConnections is zero.
E_UNEXPECTED An unknown error occurred.
E_OUTOFMEMORY There is not enough memory to enumerate the elements.

Comments:
E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries in the rgpcn array are
valid on exit and require no release.

Copyright © 1995 Microsoft Corporation Page: 6 DRAFT
All Rights Reserved

The COM Specification Chapter 9. Connectable Objects

1.3.2IEnumConnectionPoints::Skip
HRESULT IEnumConnectionPoints::Skip([in] ULONG cConnections);
Instructs the enumerator to skip the next cConnections elements in the enumeration such that the next call

to IEnumConnectionPoints::Next will not return those elements.

Argument Type Description
cConnections ULONG [in] Specifies the number of elements to skip in the enumeration.

Return Value Meaning
S_OK The number of elements skipped is cConnections.
S_FALSE The enumerator skipped fewer than cConnections because there were not that

many left in the list. The enumerator will, at this point, be positioned at the
end of the list such that subsequent calls to Next (without an intervening
Reset) will return zero elements.

E_INVALIDARG The value of cConnections is zero, which is not valid.
E_UNEXPECTED An unknown error occurred.

1.3.3IEnumConnectionPoints::Reset
HRESULT IEnumConnectionPoints::Reset(void);
Instructs the enumerator to position itself back to the beginning of the list of elements.

Argument Type Description

none

Return Value Meaning
S_OK The enumerator was successfully reset to the beginning of the list.
S_FALSE The enumerator was not reset to the beginning of the list.
E_UNEXPECTED An unknown error occurred.

Comments:
There is no guarantee that the same set of elements will be enumerated on each pass through the list: it
depends on the collection being enumerated. It is too expensive for some collections, such as files in a
directory, to maintain this condition.

1.3.4IEnumConnectionPoints::Clone
HRESULT IEnumConnectionPoints::Clone([out] IEnumConnectionPoints **ppEnum);
Creates another connection point enumerator with the same state as the current enumerator, which
iterates over the same list. This makes it possible to record a point in the enumeration sequence in order
to return to that point at a later time.

Argument Type Description
ppEnum IEnumConnectionPoints** [out] The address of the variable to receive the

IEnumConnectionPoints interface pointer to the newly
created enumerator. The caller must release this
new enumerator separately from the first
enumerator.

DRAFT Page: 7 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 9. Connectable Objects The COM Specification

Return Value Meaning
S_OK Clone creation succeeded.
E_NOTIMPL Cloning is not supported for this enumerator.
E_POINTER The address in ppEnum is not valid (such as NULL)
E_UNEXPECTED An unknown error occurred.
E_OUTOFMEMORY There is not enough memory to create the clone enumerator.

1.4The IEnumConnections Interface
Any individual connection point can support enumeration of its known connections through
IConnectionPoint::EnumConnections. The enumerator created by this function implements the interface
IEnumConnections which deals with the type CONNECTDATA. Each CONNECTDATA structure contains the
the IUnknown * of a connected sink and the dwCookie that was returned by IConnectionPoint::Advise when that
sink was connected. When enumerating connections through IEnumConnections, the enumerator is
responsible for calling IUnknown::AddRef through the pointer in each enumerated structure, and the caller is
responsible to later call IUnknown::Release when those pointers are no longer needed.
IDL:

[
uuid(B196B287-BAB4-101A-B69C-00AA00341D07)
 , object, pointer_default(unique)
]
interface IEnumConnections : IUnknown
 {
 typedef struct tagCONNECTDATA
 {
 IUnknown *pUnk;
 DWORD dwCookie;
 } CONNECTDATA;

 typedef struct tagCONNECTDATA *PCONNECTDATA;
 typedef struct tagCONNECTDATA *LPCONNECTDATA;

 HRESULT Next([in] ULONG cConnections
 , [out, max_is(cConnections)] CONNECTDATA *rgpcd
 , [out] ULONG *pcFetched);

 HRESULT Skip([in] ULONG cConnections);
 HRESULT Reset(void);
 HRESULT Clone([out] IEnumConnections **ppEnum);
 }

Copyright © 1995 Microsoft Corporation Page: 8 DRAFT
All Rights Reserved

The COM Specification Chapter 9. Connectable Objects

1.4.1IEnumConnections::Next
HRESULT IEnumConnections::Next([in] ULONG cConnections ,

[out, max_is(cConnections)] CONNECTDATA *rgpcd,
[out] ULONG *pcFetched);

Enumerates the next cConnections elements in the enumerator’s list, returning them in rgpcd along with the
actual number of enumerated elements in pcFetched. The caller is responsible for calling IUnknown::Release
through each pUnk pointer returned in the structure elements of rgpcd.

Argument Type Description
cConnections ULONG [in] Specfies the number of CONNECTDATA structures to return

in the array pointed to by rgpcd. This argument must be 1
if pcFetched is NULL.

rgpcd CONNECTDATA * [out] A pointer to a caller-allocated CONNECTDATA array of size
cConnections in which to return the enumerated connections.
The caller is responsible for calling CONNECTDATA.pUnk-
>Release for each element in the array once this method
returns successfully. If cConnections is greater than one the
caller must also pass a non-NULL pointer passed to
pcFetched to know how many pointers to release.

pcFetched ULONG [out] A pointer to the variable to receive the actual number of
connections enumerated in rgpcd. This argument can be
NULL in which case the cConnections argument must be 1.

Return Value Meaning
S_OK The requested number of elements has been returned and *pcFetched (if non-

NULL) is set to cConnections if
S_FALSE The enumerator returned fewer elements than cConnections because there

were not that many elements left in the list.. In this case, unused elements in
rgpcd in the enumeration are not set to NULL and *pcFetched holds the
number of valid entries, even if zero is returned.

E_POINTER The address in rgpcd is not valid (such as NULL).
E_INVALIDARG The value of cConnections is not 1 when pcFetched is NULL; or the value of

cConnections is zero.
E_UNEXPECTED An unknown error occurred.
E_OUTOFMEMORY There is not enough memory to enumerate the elements.

Comments:
E_NOTIMPL is not allowed as a return value. If an error value is returned, no entries in the rgpcn array are
valid on exit and require no release.

1.4.2IEnumConnections::Skip
HRESULT IEnumConnections::Skip([in] ULONG cConnections);
Instructs the enumerator to skip the next cConnections elements in the enumeration such that the next call
to IEnumConnections::Next will not return those elements.

Argument Type Description
cConnections ULONG [in] Specifies the number of elements to skip in the enumeration.

Return Value Meaning
S_OK The number of elements skipped is cConnections.

DRAFT Page: 9 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 9. Connectable Objects The COM Specification

S_FALSE The enumerator skipped fewer than cConnections because there were not that
many left in the list. The enumerator will, at this point, be positioned at the
end of the list such that subsequent calls to Next (without an intervening
Reset) will return zero elements.

E_INVALIDARG The value in cConnections is zero which is not valid.
E_UNEXPECTED An unknown error occurred.

1.4.3IEnumConnections::Reset
HRESULT IEnumConnections::Reset(void);
Instructs the enumerator to position itself back to the beginning of the list of elements.

Argument Type Description

none

Return Value Meaning
S_OK The enumerator was successfully reset to the beginning of the list.
S_FALSE The enumerator was not reset to the beginning of the list.
E_UNEXPECTED An unknown error occurred.

Comments:
There is no guarantee that the same set of elements will be enumerated on each pass through the list: it
depends on the collection being enumerated. It is too expensive for some collections, such as files in a
directory, to maintain this condition.

1.4.4IEnumConnections::Clone
HRESULT IEnumConnections::Clone([out] IEnumConnections **ppEnum);
Creates another connections enumerator with the same state as the current enumerator, which iterates
over the same list. This makes it possible to record a point in the enumeration sequence in order to return
to that point at a later time.

Argument Type Description
ppEnum IEnumConnections** [out] The address of the variable to receive the

IEnumConnections interface pointer to the newly created
enumerator. The caller must release this new
enumerator separately from the first enumerator.

Return Value Meaning
S_OK Clone creation succeeded.
E_NOTIMPL Cloning is not supported for this enumerator.
E_POINTER The address in ppEnum is not valid (such as NULL)
E_UNEXPECTED An unknown error occurred.
E_OUTOFMEMORY There is not enough memory to create the clone enumerator.

Copyright © 1995 Microsoft Corporation Page: 10 DRAFT
All Rights Reserved

	1 Connectable Objects
	1.1 The IConnectionPoint Interface
	1.1.1 IConnectionPoint::GetConnectionInterface
	1.1.2 IConnectionPoint::GetConnectionPointContainer
	1.1.3 IConnectionPoint::Advise
	1.1.4 IConnectionPoint::Unadvise
	1.1.5 IConnectionPoint::EnumConnections

	1.2 The IConnectionPointContainer Interface
	1.2.1 IConnectionPointContainer::EnumConnectionPoints
	1.2.2 IConnectionPointContainer::FindConnectionPoint

	1.3 The IEnumConnectionPoints Interface
	1.3.1 IEnumConnectionPoints::Next
	1.3.2 IEnumConnectionPoints::Skip
	1.3.3 IEnumConnectionPoints::Reset
	1.3.4 IEnumConnectionPoints::Clone

	1.4 The IEnumConnections Interface
	1.4.1 IEnumConnections::Next
	1.4.2 IEnumConnections::Skip
	1.4.3 IEnumConnections::Reset
	1.4.4 IEnumConnections::Clone

